

PRODUCT REDESIGN PROCESS LEATHERMAN ARC MULTI-TOOL

JEL NEWSHIEST

Collaborative Product Design - Fall 2023

Sarah Hashiguchi Jordan Synnestvedt Solomon Sanchez Kate Ithurralde

0

LEATHERMAN ARC

TOOLS INCLUDED

- **1.** MagnaCut Knife Blade
- 2. Needlenose Pliers
- **3.** Regular Pliers

0

LEATHERMAN

()

- **4.** Large Bit Driver
- 5. Diamond-coated File
- **6.** Small Bit Driver
- 7. Wood/Metal File
- 8. Pry Tool
- **9.** Premium Replaceable Wire Cutters
- **10.** Premium Replaceable Hard-wire Cutters

- **11.** Impact Surface
- **12.** Large Screwdriver
- **13.** Bottle Opener
- 14. Can Opener
- **15.** Awl
- **16.** Spring-action Scissors
- **17.** Saw
- **18.** Wire Stripper
- **19.** Electrical Crimper
- **20.** Edge File

SYSTEM MAP

DESIGN BRIEF

The first step of our redesign process was to conduct Life Cycle Assessments (LCA's). We prepared for this exercise by defining our boundaries, functional units, priorities and priority reasonings, and metrics for success.

BOUNDARIES

INCLUDE: tool, sheath, sourcing, transportation, manufacturing processes, user behavior (repair and disposal, corporate engagement)

EXCLUDE: packaging, facility/utilities

FUNCTIONAL UNIT

Lifetime of the product (25 years)

PRIORITY REASONING

We initially chose our sustainable design objectives based on their direct impact to human health and safety, and the potential we saw to improve those areas through an LCA sensitivity analysis. We included non-negotiable business objectives that were provided by the client, and therefore are high priorities in our redesign process.

METRICS FOR SUCCESS

- 1. Reduce carcinogens by **30%**
- 2. Maintain projected working lifespan of **25 years**
- 3. Reduce overall CO₂ eq. kg/func unit by **25%**
- 4. Maintain **majority** customer approval of functionality, desirability, and attractiveness
- 5. Maintain a **40%** profit margin (while keeping market prices in mind)
- 6. Improve LCA Impact Score by **50%**

LIFE CYCLE ANALYSIS

ORIGINAL PRODUCT LCA

SBOM BASELINE:

Name		Material/Process	Qty	Amt	Unit	mPts	CO2 eq. kg	MS	Part ID	
+]	PLASTIC SLEEVE FOR EXTRA	Polyethylene, LDPE, granulat	1	9	g	2.11x10 ⁻³	0.0342	E	34	Process 🕞 🗗 🗶 🗙
+ 🗋	EXTRA BITS (11)	Stainless steel, austenitic	1	35	9	0.476	0.605	E	33	Procest 🐨 🗗 🖍 🗙
+ 🗋	SHEATH	Nylon 6	1	52	9	0.0601	1.16	Е	32	Process 😁 🗗 🖍 X
+]	BIT DRIVER, LG, SPRING, STAN	Stainless steel, austenitic	1	0.25	g	2.08x10 ⁻³	2.08×10 ⁻³	Е	31	Process 😁 🗗 💉 🗙
+]	BIT, EGSD-EGPSD, FINISHED	Stainless steel, austenitic	1	0.25	g	3.61x10 ⁻³	7.52x10 ⁻³	Е	30	Process + d ² / X
+]	BIT, PSD 1-2 SD, 3/16, FINISHED	Stainless steel, austenitic	1	4	g	0.0545	0.0703	E	29	Prounts + 🗗 💉 X
+0	SAW, MPT	Stainless steel, austenitic	1	9	g	0.122	0.151	Е	28	Propess 🕒 🗗 💉 🗙
+ 🗅	SCREW, KB/JAW, BLACK	Stainless steel, austenitic	2	0.4	g	6.83x10 ⁻³	8.16x10 ⁻³	Е	27	Proceed 🗧 🗗 💉 🗙
+]	PIN, TOOL END, THICK/MEDIUN	Stainless steel, austenitic	2	0.5	g	8.32x10 ⁻³	8.16x10 ⁻³	Е	26	Process 🕞 🗗 🖉 🗙
+]	PIN, JAW END, THICK, BLACK	Stainless steel, austenitic	2	2	g	0.0333	0.0326	E	25	Progette 👉 🗗 🖌 X
+]	LOCK, THICK, MPT	Stainless steel, austenitic	2	6	9	0.0999	0.100	Е	24	Process 🗧 🗗 💉 🗙
+ 0	SPRING, JAW/HANDLE, MPT	Polycarbonate, PC	2	0.25	g	2.30x10 ⁻⁴	4.13x10 ⁻³	Е	23	Fromas 🕞 🗗 💉 🗙
+ 🗅	PLUG, HANDLE, BLACK	Acrylonitrile-butadiene-styren	2	0.25	g	2.32x10 ⁻⁴	2.42x10 ⁻³	Ē	22	Process + 🗗 🖋 X
+ 0	MAGNET, THICK, MPT	Nickel, primary	2	0.5	g	2.32x10 ⁻³	0.0160	Е	21	Progense 🛊 🗗 💉 🗙
+)	SCREW, POCKET CLIP, MPT/PK	Stainless steel, austenitic	2	0.1	g	1.77x10 ⁻³	3.04×10 ⁻³	Е	20	Pressus 👔 🗗 🖉 X
+ 🗅	SCISSOR, SPRING, MOD	Stainless steel, austenitic	1	1	g	0.0160	0.0194	Е	19	Process 🔸 🗗 💉 🗙
+0	SCISSOR SUB-ASSY, MPT	Stainless steel, austenitic	1	9	g	10.1	11.1	Е	18	Process 🔶 🗗 💉 X
+)	WASHER, TOOL END, THICK, M	Stainless steel, austenitic	4	0.1	g	3.32x10 ⁻³	3.33x10 ⁻³	E	17	Progette 🔶 🗗 🗶 X
+ 1	POCKET CLIP, MPT	Stainless steel, austenitic	1	4	9	0.0333	0.0333	Е	16	Process 🔸 🗗 🖍 X
+)	JAW SPACER	Stainless steel, austenitic	4	2	g	0.108	0.133	Е	15	
+]	BIT DRIVER, LG, BODY, MIM	Stainless steel, austenitic	1	10	g	0.321	0.465	Ē	14	Process & d ² 🖉 X
+ 0	CAP LIFTER, PRYBAR	Stainless steel, austenitic	1	10	g	0.321	0.465	Е	13	Presente 🖉 🖉 🗶 🗙
+0	KB, MAGNACUT, DLC	Stainless steel, austenitic	1	17	g	0.272	0.330	ε	12	Present 👌 🗗 🖍 🗙
+ 🗅	HANDLE, POCKET CLIP	Stainless steel, austenitic	2	14	g	0.380	0.476	Е	11	Process 🐐 🗗 💉 🗙
+0	SPACER, BIT KEEPER	Stainless steel, austenitic	1	2	g	0.0167	0.0167	Е	10	Process 🖌 🗗 🖉 🗶
+ 1	SCREW, TOOL END, MOD	Stainless steel, austenitic	2	0.2	g	3.82x10 ⁻³	0.0101	E	9	Process + d X
+ 🗅	THUMB STUD, FREE, BLACK	Stainless steel, austenitic	1	0.1	g	6.98x10 ⁻⁴	2.22x10 ⁻³	Е	8	Precess 🛨 🗗 💉 X
+ 0	BIT DRIVER, MICRO, SUB-ASSE	Stainless steel, austenitic	ĩ	7	g	0.0949	0.116	Е	7	Process in 🗗 💉 🗙
+ 1	BORING AWL, WIRE STRIPPER	Stainless steel, austenitic	1	5	g	0.0801	0.0972	Ē	6	Property of 🖉 🗶 🗶
+ 0	CAN OPENER, MOD	Stainless steel, austenitic	1	5	g	0.0678	0.0838	E	5	Process 🗧 🗗 💉 X
+)	LOCK SPRING, TOOL, MOD	Stainless steel, austenitic	4	0.25	g	8.33x10 ⁻³	8.33x10 ⁻³	Е	4	Presentes 👔 🗗 💉 🗙
+ 🗅	FILE, EXTERNAL	Stainless steel, austenitic	1	11	g	0.149	0.184	Е	3	Process + d ² / X
+ 0	HANDLE, JAW GUIDE	Stainless steel, austenitic	2	14	g	0.382	0.502	Е	2	Process + d / X
+0	JAW SUB-ASSY, THICK, MOD	Stainless steel, austenitic	1	62	g	1.99	2.89	E	1	Process D 🗗 🖍 🗙
		Manufacturing total				15.2	19.1	E		
Name		Transportation mode	Qty	Amt	Unit	mPts	CO ₂ eq. kg	M	S Part ID	
-	Assembled product									Add traus. mode 🔶
	Transportation mode	Transport, combination truck		600	mi	2.74x10 ⁻³	0.0307	E		
	Transportation mode	Freighter, oceanic		3000	mi	1.32x10 ⁻³	0.0189	E		
	Transportation mode	Train, freight, diesel		600	mi	1.70x10 ⁻³	0.0174	E		

Impacts by SBOM inputs: Total [mPts/func unit]

Reference

Impacts by SBOM inputs: Total [CO2 eq. kg/func unit]

Product Baseline LCA

Reference

Total = 15mPts/func unit

Input	mPts/func unit	
Process - Stainless steel, austenitic: Metal working, stainless steel product manufacturing	10.0	
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	1.30	
Material - Stainless steel, austenitic	0.364	
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.325	
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.210	
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.210	
Material - Stainless steel, austenitic	0.206	
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.183	16
Material - Stainless steel, austenitic	0.164	
Material - Stainless steel, austenitic	0.164	

Total = 19 CO2 eq. kg/func unit

Input		CO2 eq. kg/func unit
Proce auste stainle manu	ess - Stainless steel, nitic: Metal working, ess steel product facturing	11.0
Proce auste stainle	ess - Stainless steel, nitic: Casting, ess steel, lost-wax	2.02
Proce	ess - Nylon 6: ing, cotton	0.679
Proce auste chron	ess - Stainless steel, nitic: Drilling, CNC, nium steel	0.522
Mater	ial - Nylon 6	0.479
Mater	ial - Stainless steel, nitic	0.339
Proce auste staink	ess - Stainless steel, nitic: Casting, ess steel, lost-wax	0.326
Proce auste stainle	ess - Stainless steel, nitic: Casting, ess steel, lost-wax	0.326
Proce auste chrom	ess - Stainless steel, nitic: Drilling, CNC, nium steel	0.294
Proce auste chron	ess - Stainless steel, nitic: Drilling, CNC, nium steel	0.236

LCA MODEL RESULTS

The following matrix shows how our LCA scenarios scored in comparison to the baseline product, when measured against our original design objectives.

	mPts CO ₂ eq. kg	15 19	15 18	15 19	15 19
OBJECTIVE	WEIGHT	BASELINE	SHEATH	COATINGS	TRANSPORTATION
Reduce carcinogenics	4	3 (x4)	3 (x4)	3 (x4)	2 (x4)
Must last for 25 years Must be durable Must be corrosion resistant Must hold an edge very well 	4	3 (x4)	2.5 (x4)	3 (x4)	3 (x4)
Reduce overall CO ₂ eq. kg/functional unit	3	3 (x3)	3 (x3)	3 (x3)	2 (x3)
 Maintain 40% profit margin Must cover all overhead, remain debt free, and have the ability to fund all of their own projects Pricing structure = Cost + Margin 	2	3 (x2)	4 (x2)	5 (x2)	2 (x2)
Must be functional, desirable, attractive	2	3 (x2)	3 (x2)	2 (x2)	3 (x2)
LCA improvement	1	3 (x1)	3 (x1)	3 (x1)	1 (x1)
	TOTALS	48	48	50	37

LCA TAKEAWAYS

LCA CONSULTATIONS AND DIRECTIONS

As seen in the graphs from the initial LCA testing, the processes associated with the stainless steel, as well as the stainless steel itself, appear to be at this stage the largest areas of environmental impacts and carcinogens.

It is our recommendation that we continue to investigate and compare your existing source mill, Niagara Specialty Metals, to other certified mills that are nearer to your factory. With this measure we hope to:

- Ensure that the steel is being processed at the highest ethical and environmental standards possible.
- Shorten the transportation distance, minimizing fossil fuel use.

Here are two mills and their acrediting bodies to look to:. Big River Steel, Arkansas and Nucor, North Carolina

Accreditation entities and resources:

The second area that produced the most notable environmental impacts was the transportation associated with importing the virgin nylon sheath from Asia.

We suggest that we find alternative ways of sourcing and fabricating these sheaths locally. To follow, we have some suggestions around this effort.

MOVING ON TO BIGGER, BETTER, AND MORE SUBSTATIAL TARGETS

- TOO EXPENSIVE
- TOO EASY
- TOO INEFFECTIVE

We realized that the green steel would fall out of feasibility due to its high price point being 20-30% higher than average steel. So although it would be a smart suggestion for another tool, it seemed to increase the price of this model too far out of reach for most customers.

A redesign of the sheath seemed like a simple project that was way too obvious, and the answers are literally everywhere. After learning that only 30% of the customers use the sheath, it seemed like an ineffective solution to spend the rest of our time on.

We recommend that you make the purchase of the sheath optional, and bring the price of the tool down, and keep 70% of the sheaths from being wasted. Simultaneously, by offering a sustainably made sheath sold separately, might be an expensive litmus test to see customers' response about sustainability made goods from leatherman.

With that exploration behind us, we noticed some interesting opportunities to intensify and accentuate existing attributes that are inherent in your company's DNA, but are also synonymous with sustainability.

So following the LCA exercises, the project took a strategic shift that led towards a new and promising direction. Through meticulous decision-making processes, some of the winning designs fell within the marketing and communication sphere. While we understand that these concepts fall outside the scope of Adam's role as Leatherman's product designer, we are eager to share these innovative ideas with you, in the hopes that you share them with your colleagues.

As you will see with our final designs, the marketing campaigns we've developed are inspired by audiences across the political spectrum – encompassing red, blue, and purple affiliations. The primary objective of these campaigns is to ensure the ubiquitous presence of the Leatherman tool in the hands of users at all times. The Leatherman tool stands as a beacon of sustainability and self–sufficiency, empowering users to repair and maintain their products rather than opting for replacements.

DESIGN OBJECTIVES

After conducting our initial LCA's, we established design objectives that would invite design opportunities in other areas of sustainability, outside of just materials and processes.

PRIORITY	OBJECTIVE	METRIC(S)
1	Must be durable, corrosion resistant, and hold an edge	Must last for at least 25 years
2	Must be functional, desirable, and attractive	 85% customer satisfaction of the tool in all categories Can maintain 40% profit margin without pricing the unit out of scope
3	Encourage sustainable behavior change	 Increase number of tools sold that are sent in for repair by 5% Survey responses report 99% of users have used their Leatherman Arc to repair another consumer good
4	Market sustainability in an inclusive way	 95% of consumers approve of communication and execution of the initiative
5	LCA improvement	 LCA improvement of > +25%

	Sheath: Alternative Materials Resource Table					
MATERIAL	LINK(S)	PROS	CONS	CONTACT (if applicable)	PHOTO(S)	
Cork Leather	https://mbcork.com/en-us	Renewable material - doesn't damage the tree Flexible and soft Color options Produces no waste in extraction, processing, or production Produces no waste in extraction, processing, or production Completely recyclable; can be ground and made into new material	Grows primarily in Portugal Not as sturdy as animal hide leather	Email: cs.mbcork@gmail.com (Portugal)		
Mylo	https://mylo-unleather.com/	 Brought to market with Adidas, Lukulemon Grows in weeks (rather than years) Is composable Naturally absorband, antibacterial and antimicrobial 	Not biodegradable Plastics still included in final product Chemicals involved in manufacturing process	https://mylo-unleather.com/contact/	-8-	
Vegea	https://alternativeleathers.com/pages/grape-leather https://www.vegeacompany.com/	Renewable material souce (Vegea sources grape skins, seeds, and stalks from wineries across Italy. These are the leftovers from their winemaking process.) Brought to market with Calvin Klein, Diadora, Bentley	Not biodegradable Plastics still included in final product Chemicals involved in manufacturing process	https://alternativeleathers.com/pages/contact	N	
Desserto	https://atemativeleathens.com/pages/cactus-leather https://desserto.com.mx/home https://eikenshop.com/en-us/blogs/leather- guide/cactus-leather#H6		Not as flexible as animal leather Partially biodegradable Only lasts about 10 years Expensive (targeted to wealty minority)	https://alternativeleathers.com/pages/contact	2	
Piñatex	https://altemativeleathers.com/pages/pinatex https://www.panaprium.com/blogu//pinatex.pineapple- leather https://www.ananas-anam.com/	 Renewable material source (After pineapple harvest, the plant leaves that are left behind are collected in bundles and the long fibres are extracted using semi-automatic machines). Bought to market with Hugo Boas, Nike, H&M and more Uses wase from pineapple family notary 30% Cheaper than animal leaster Lightweight and duable 	Unike animal hide leather, pinatex is not biodegradable Low heat resistance Low elasticity Low abrasion resistance Can dry out over time (doesn't last as long as animal leather)	https://alternativeleathers.com/pages/contact		

IDEA DEVELOPMENT

CIRCULARITY

THE ADAPTIVE STRATEGY:

Step 1: Observe and Interpret the System

- What's in the system?
- Key actors in the system
- Forces driving a circular paradigm shift
- Forces holding linear system
- Circular economy activity underway
- Building on current efforts and identifying gaps

Step 2: Envision Circular Futures

Step 3: Create the Conditions for Collaboration

Step 4: Build Circular Design Capabilities

- Define the role of the designer
- Analyze the skills gap

Step 5: Rewrite the Rules

- Internally
- Externally

Step 6: Develop Tools to Design and Evaluate

PERSUASIVE DESIGN

PERSUASIVE DESIGN STRATEGY:

PERSUASIVE TOOL: MODULAR TOOL

PERSUASIVE MEDIA / SOCIAL ACTORS: "REPAIRED BY LEATHERMAN"

MODELING BEHAVIOR & ATTITUDE: BRAND PARTNERSHIP

MARKETING AND COMMUNICATIONS

MARKETING BRIEF

GOALS - What are measurable goals?

PRODUCT - How does the company deliver value?

OBJECTIVE - What is the company working to accomplish?

MISSION - What is the mission of the company?

VISION - What is the vision for the company?

DIFFERENTIATORS - What can no one else do?

AUDIENCE - Demographics

PSYCHOGRAPHICS - Hobbies, interests, beliefs, values

VISIBILITY - What media channels does the audience use?

MOTIVATIONS - Why do people engage with the company?

POSITIONING -

- SWOT (strengths, weaknesses, opportunities, threats) as it pertains to sustainability
- What challenges, opportunities, and changes will the company face in the future?
- What sets this company apart from the competition?

PLATFORM -

- What sustainability messages can the company own, with truth and authenticity?
- What unsustainable practices does the company need to address?
- What improvements to sustainable practices might most appeal to the company's core audience?

UNSDG GOALS - Which of the UNSDG goals best aligns with the company's products and values?

1 CONTEXTUAL STORYTELLING

Place the tools in settings where sustainability practices are naturally occurring. For example, show a construction worker using tools in a LEED-certified building or a craftsman repairing tools in a workshop with eco-friendly practices. This creates a story that aligns the tools with sustainable environments.

REPAIR & MAINT. SCENES

Capture moments of repair and maintenance in action. Whether it's hands fixing a tool or someone polishing and maintaining equipment, these scenes convey the message of durability and the importance of extending the lifespan of tools.

5 COLLABORATIVE IMAGERY

Include imagery that involves collaboration or community engagement in sustainable activities. For instance, show a group of workers participating in a tree-planting event while using the tools. This associates the brand with collective efforts toward sustainability.

7 NATURAL LIGHT & ECO SETTINGS

Use natural light in photography and showcase tools in eco-friendly settings. This not only creates aesthetically pleasing visuals but also subliminally connects the tools with a natural and sustainable environment.

Incorporate green spaces and landscapes in the background to convey a connection with nature. This can be achieved by featuring tools being used in outdoor environments or settings that emphasize a harmonious relationship with the environment.

2 ENVIRONMENTAL INTEGRATION

Choose backgrounds that subtly showcase nature or eco-friendly elements. This could include images of tools being used outdoors in a garden or workshop, subtly implying a connection to the environment without overtly emphasizing it.

4 SUSTAINABLE MATERIALS

Highlight the use of sustainable materials in the visuals. If applicable, showcase tools made from recycled or responsibly sourced materials. This not only communicates a commitment to sustainability but also educates consumers about the eco-friendly aspects of the products.

6 ENERGY-EFFICIENT ENVIRONMENTS

Depict tools being used in energy-efficient spaces or settings powered by renewable energy. This indirectly communicates a commitment to sustainable practices and aligns the tools with environmentally conscious actions.

8 EVERYDAY SUSTAINABILITY

Capture everyday scenarios where tools contribute to sustainable actions, such as a person using a tool to repair household items rather than disposing of them. This normalizes sustainable behavior without explicitly stating it.

10 SUBTLE ECO-FRIENDLY SYMBOLS

Place subtle eco-friendly symbols in the visuals, such as recycling icons or green leaves, to convey an underlying commitment to sustainability without overpowering the main message.

NARROWING DOWN

TOP 8 DESIGN CONCEPTS

TOP IDEAS:

In the culmination of our research efforts, our team meticulously examined the body of work we had generated. Through comprehensive discussions, several standout ideas emerged, each carrying the potential to significantly enhance our project. In no particular order, our top ideas were as follows:

1.

LESS MATERIALS - NO SHEATH:

 Concept of selling the sheath separately, and adjusting the price point accordingly

2. ETHICAL SOURCING:

- Steel LEED Certified Process / Source
- Reaching out to those companies to deliver some formal cost analysis & key contacts
- Inquiries Contacts and & resources for Leatherman to follow up on

3. MODULAR DESIGN:

Interchangeable components

FIX IT - REPAIRED BY LEATHERMAN:

- Marketing campaign
- Promote ideal of self-sufficiency
- Online portal / Community "hub"

5.

CIRCULARITY COMMITMENT:

• Guidelines for internal teams

6. MATERIAL ALTERNATIVES FOR SHEATH:

- Create a resource matrix for Leatherman
- List company info based on component
- Drive folder of organized brochures / resources we've collected

WOMEN/GENDER INCLUSIVITY:

- Social media campaign
- "Girls who Rock"

8. SUGGESTIVE SUSTAINABILITY:

- Example Carhartt
- Discreet logo utilization

LIFE CYCLE ASSESSMENTS

"IF WE" LCA BRAINSTORM

While we encountered challenges in conducting Life Cycle Assessments (LCAs) for the majority of our concepts, we successfully navigated this limitation by employing a creative brainstorming approach to contemplate each concept's relative impact. Utilizing the guiding phrase "If we," our team generated insightful considerations that provided valuable perspectives on the potential environmental implications of our ideas.

LESS MATERIALS - NO SHEATH:

• If we sold 70% less imported nylon sheaths it would be this much CO₂ and plastic saved.

ETHICAL SOURCING:

• If the steel was sourced by this mill compared to this mill there would be this much CO₂ diverted.

MATERIAL ALTERNATIVES FOR SHEATH:

• If we used this material over this material we would save this much energy/ carbon etc.

CIRCULARITY COMMITMENT:

- If we partnered with this nearby factory to make X and we gave them Y we could avoid this much waste CO₂ etc.
- If the steel was in a closed loop reclaim recycle reuse system, this much virgin material would not be used.

MODULAR DESIGN:

• If every tool left out one or more tool components, made them more specific to the owner, that would save this much steel and CO₂, plus improve their effectiveness, and save more things from being thrown away.

FIX IT - REPAIRED BY LEATHERMAN:

- If a repair video from their "fix it" campaign can prevent X amount of leathermans being returned to the factory for repair.
- If the average leatherman repaired one X, there would be this many Xs that were not thrown away.

WOMEN/GENDER INCLUSIVITY:

• If more women carried leatherman tools, more things could be fixed, and women would be more empowered (#5 UNSDGs).

SUGGESTIVE SUSTAINABILITY:

• If more people thought of sustainability as a design achievement, rather than a political ideology, it might open the doors to new perspectives, collaborators, and participants.

LCA'S FOR RELEVANT CONCEPTS

Impacts by SBOM Inputs: Total [CO2 eq. kg/func unit]

Impacts by SBOM Inputs: Total [mPts/func unit]

DECISION MATRIX

				1	2	3	4	5	6	7	8
			WEIGHT	Less Materials - No Sheath	Ethical Sourcing	Material Alternatives - Sheath	Circular Design Commitment	Modular Design	Fix-It Campaign	Gender Inclusivity	Suggestive Sustainability
			1- Significant negati	ive impact / 2 - Some	e negative impact / 3 -	Objectives No change from curre	/ Metrics ent product / 4 - Some po	ositive improve	ement / 5 - Significant	positive improvement	
RIX	Must last for 25 years > Must be durable, corrosion resistant, and hold an edge	Would the concept last for at least 25 years?	4	2.5 (x4) (less protection without sheath)	3 (x4)	3 (x4)	4.5 (x4)	4 (x4)	3 (x4)	3 (x4)	3 (x4)
MAT	Must be functional, desirable and attractive	Would the concept detract from an 85% satisfaction rate of the product?	2	3 (x2)	3 (x2)	4 (x2)	4 (×2)	4.5 (x2)	3.5 (x2)	3.5 (x2)	3.5 (x2)
Z		Would the concept impact profit margins?									
SIO	Encourage sustainable behavior change	Would the concept increase the number of tools repaired?		2.5 (x5)	3.5 (x5) does encourage but not directly related to	3.5 (x5) does encourage but not directly related to our 2					
DECI		Would the concept increase the likelihood of consumers using their tool to repair other goods?	5	(slightly less likely to carry it on you?)	our 2 metrics. Maybe a higher price point for an ethically sourced tool would encourage users to repair vs. re-buy	metrics. Maybe a higher price point for an ethically sourced tool would encourage users to repair vs. re-buy	4.5 (x5)	4.5 (x5)	5 (x5)	5 (x5)	5 (x5)
	Market sustainability in an inclusive way	Would the concept detract from a 95% satisfaction rate of the brand?	3	3.5 (x3)	4 (x3) > Made in USA > Made responsibly > Worker's health	4 (x3) > Made responsibly > Environmental / ecosystem health	4 (x3)	4 (x3)	5 (x3)	5 (x5)	5 (x5)
	LCA Improvement	Would the concept have an enhanced LCA score from the unit's baseline: 45	1	4 (x1)	4 (x1)	3.5 (x1)	4.5 (x1)	3.5 (x1)	3 (x1)	3 (x1)	3 (x1)
	TOTALS	BASELINE: 45		43	51.5	53	65	63	62	62	62

FINAL CONCEPTS

Upon completing the decision matrix, the prevailing concepts swiftly emerged as clear winners. We found that these concepts are not only the most useful and impactful designs for Leatherman as they stand today, but have the most opportunity for expansion and development over time.

1. CIRCULARITY COMMITMENT:

Through thoughtful consideration of materials, recycling processes, and product end-of-life management, the revised design ensures a closed-loop system that minimizes waste and fosters a culture of sustainability.

This approach promotes longevity and reduces environmental footprint through extended product lifespan, enhanced repairability, and the potential for future upgrades, embodying a more sustainable and resource-efficient solution.

3. EXTERNAL MARKETING CAMPAIGN:

Recognizing their collective strength, we strategically amalgamated these three ideas into a more expansive and cohesive "Marketing Campaign".

- Fix It Repaired by Leatherman
- Women/Gender Inclusivity
- Suggestive Sustainability

The consolidated Marketing Campagn demonstrates a marked improvement in ecological impact by fostering awareness and responsible consumer behavior.

FINAL CONCEPTS

FINAL CONCEPT #1 - CIRCULARITY COMMITMENT

The below illustration demonstrates how an upfront commitment to circularity would impact the tool's full life cycle. A circularity commitment can be made by Leatherman as a brand, and by internal teams including design, sourcing, marketing, and engineering. LEATHERMAN CIRCULARITY COMMITMENT SYSTEMS MAP RENEWABLE **DESIGN TOOL FOR** EASY CUSTOM MODIFICATION, REPAIR, AND RECYCLING RECYCLE TOOL DIRECT TO MILL STEEL SCRAP TO MILL SUCCEED -00 REPAIR INPLEMENT PASS OF REPAIR TOOL LEATHERMAN EMPLOYEES USERS TOOL PROLONG REUSE ش REPLACE PART TRAIN OF 43 RETURN THEFT DETERRENT PACKAGING DESIGN FOR DISASSEMBLY SELL TRADE SCRAP MANURACTURE Ë MYLO COLLABORATORS ¥ DESIGN SHEATH WITH LOCAL OUTFITTERS COLLABORATIVE SHEATH EXISTING SYSTEMS MAP DESIGN FROM SCRAPS

FINAL CONCEPT #1 - CIRCULARITY COMMITMENT (CONT.)

There are numerous options and methods to establishing a commitment to circularity. The below demonstrates an example outline of commitments Leatherman could make:

GUIDING PRINCIPLES:

- 1. Design for Durability
- 2. Modularity and Repairability
- 3. Sustainable Material Selection
- **4.** Closed-Loop Manufacturing
- 5. End-of-Life Responsibility

OPERATIONAL GUIDELINES:

- 1. Cross-Functional Collaboration
- 2. Life Cycle Assessments (LCAs)
- **3.** Consumer Education
- 4. Supplier Engagment
- 5. Continuous Improvement

Circularity

Resources

- Metricus → https://www.circumates.gitpube.com/resources/circulvfds/tesources
 Circulvfics → https://www.ellenmacarthurboundation.org/resources/circulvfds/tesources

[Sample] Circular Design Commitment

This is intended to serve as an example of what a Circular Design Commitment might look like for the Leatherman Product Design Team. To be most effective, each principle could be accompanied by specific time-bound goals to drive progress and measure success.

Introduction

At Leatherman, we recognize the crucial role we play in shaping a sustainable future. As innovators and creators, our Product Design Team is at the forefront of this journey. Through this Circular Design Commitment, we aim to integrate circular economy principles into our daily design practices, ensuing our products contribute positively to both our customers' experiences and the environment.

Guiding Principles

- Design for Durability: Commit to creating multi-tools that withstand the test of time, facusing on quality, robustness, and longevity, Prioritize materials and construction methods that enhance the product lifespan.
- Modularity and Repairability: Embrace modulanty in design, allowing users to easily replace components and repair their multi-kcols. Design products with disassembly in mind, ensuring straightforward access to components for repair purposes.
- <u>Sustainable Material Selection</u>, Prioritize the use of responsibly sourced and recycled materials in our designs. Investigate and adopt materials with lower environmental impact, considering their antire lifecycle, from extraction to end-of-life.
- <u>Closed-Loop Manufacturing</u>: Strive for a closed-loop manufacturing process where waste is minimized, and materials are reused or recycled within our production systems. Work towards circular material flows to reduce our ecological footprint.
- End-of-Life Responsibility: Develop strategies for the end-of-life phase of our products. Encourage
 users to return their multi-tools for responsible recycling. Explore take-back programs and initiatives to
 extend product life.

Operational Guidelines

- <u>Cross-Functional Collaboration</u>: Foster collaboration with other departments, such as Marketing, Supply Chain, and Customer Support, to ensure a holistic approach to circular design. Promote knowledge sharing and cross-functional problem-solving.
- Life Cycle Assessments (LCAs): Conduct comprehensive LCAs for our products, evaluating environmental impacts throughout their lifecycle. Utilize this data to inform design decisions and continuously improve our sustainability performance.
- <u>Consumer Education</u>: Develop educational materials for customers, informing them about the repairability, recyclability, and sustainability features of our multi-tools. Empower users to make environmentally conscious choices.
- <u>Supplier Engagement</u>: Collaborate with suppliers to ensure they align with our circular design commitment. Prioritize suppliers who share our values of sustainability, ethical practices, and innovation.
- <u>Continuous Improvement</u>: Regularly review and update our circular design practices based on emerging technologies, materials, and best practices. Encourage a culture of continuous improvement and innovation within the Product Design Team.

By adhering to these principles and guidelines, we, the Leatherman Product Design Team, pledge to lead the way in circular design excellence. Through our commitment, we seek not only to create exceptional multitools, but also to contribute positively to the planet and inspire a more sustainable future.

FINAL CONCEPT #2 - MODULAR TOOL

A modular tool allows for flexibility on the consumer's end, and encourges users to take advantage of Leatherman's existing repairs program, by allowing them to send off only a single component for repair / replacement.

FINAL CONCEPT #3 - MARKETING CAMPAIGN

SUGGESTIVE SUSTAINABILITY

A "suggestive sustainability" marketing campaign gives Leatherman a voice in sustainability in an ownable, authentic and inclusive way.

LEATHERMAN SUGGESTIVE SUSTAINABILITY

BY SUPPORTING AND CULTIVATING EXISTING SUSTAINABLE BEHAVIOR THAT THE TOOL POSSESS, THEY CAN AVOID ALIENATING PEOPLE THAT DO NOT AGREE WITH SUSTAINABLE GOALS. BY FOCUSING THE MESSAGING ON REPAIR, REUSE, AND DURABILITY, THE COMPANY CAN EMBODY SUSTAINABILITY, WITHOUT SAYING IT.

Certified B Corporation

EXAMPLES OF DISCRETE CERTIFICATION LOGOS USING NEUTRAL COLORS

EXAMPLE OF SUGGESTIVE ICONOGRAPHY IN SUBTLE CHANGES TO THEIR EXISTING LOGO, SYMBOLIZING CIRCULARITY

USING PHOTOGRAPHY THAT SUPPORTS SUSTAINABLE BEHAVIOR WITHOUT MAKING SUSTAINABILITY CLAIMS

FINAL CONCEPT #3 - MARKETING CAMPAIGN (CONT.)

FIX-IT CAMPAIGN

By harnessing the power of social influence, Leatherman has an opportunity to encourage its' loyal consumers to engage in sustainability in a fun and inspiring way. An online forum platform gives users the opportunity to share their experiences and be influenced by others to give back to their community and environment.

THIS CAMPAIGN SHOWCASES THE PERSUASIVE POWER OF MEDIA AND SOCIAL ACTORS, REINFORCING LEATHERMAN'S IMAGE AS A BRAND THAT NOT ONLY PROVIDES TOP-NOTCH TOOLS BUT ALSO PROMOTES A CULTURE OF SELF-SUFFICIENCY AND COMMUNITY INVOLVEMENT.

LEATHERMAN FIX-IT CAMPAIGN ONLINE FORUM

ONLINE PORTAL

THE CORNERSTONE OF THIS CAMPAIGN IS THE "REPAIRED WITH LEATHERMAN" ONLINE PORTAL, WHICH EMPOWERS USERS TO DOCUMENT AND SHARE THEIR SUCCESSFUL REPAIRS OF HOUSEHOLD, WORK, AND OUTDOOR ITEMS USING LEATHERMAN TOOLS. BY ENCOURAGING FRIENDLY COMPETITION, POINT SYSTEMS, AND THE EXCHANGE OF TIPS AND ADVICE, THIS PLATFORM NOT ONLY REINFORCES THE UTILITY OF LEATHERMAN PRODUCTS BUT ALSO NURTURES A COMMUNITY OF LIKE-MINDED ENTHUSIASTS.

BLOG AND SOCIAL MEDIA CAMPAIGN

COMPLEMENTING THIS ONLINE PORTAL IS A DEDICATED BLOG AND SOCIAL MEDIA CAMPAIGN, ALLOWING THE "REPAIRED BY LEATHERMAN" NETWORK TO SHOWCASE THEIR SUCCESSFUL REPAIR PROJECTS. FURTHERMORE, THIS BLOG AND SOCIAL MEDIA POSTS SERVES AS AN EDUCATIONAL RESOURCE, TEACHING USERS HOW TO TACKLE VARIOUS REPAIR CHALLENGES USING THEIR LEATHERMAN TOOLS. IT POSITIONS LEATHERMAN AS MORE THAN JUST A BRAND BUT AS A VALUABLE PARTNER IN THEIR CUSTOMERS' DIY ENDEAVORS.

FINAL CONCEPT #3 - MARKETING CAMPAIGN (CONT.)

FIX-IT CAMPAIGN (CONT.)

Engagement in the Fix-It Campaign can be amplified through the use of branding - Encouraging DIY-ers to leave their mark, both literally and figuratively.

LEATHERMAN FIX-IT CAMPAIGN

REPAIRED BY LEATHERMAN STICKERS!!!

TO SOLIDIFY THE EMOTIONAL CONNECTION BETWEEN USERS AND LEATHERMAN, THE CONCEPT INTRODUCES "REPAIRED BY LEATHERMAN" STICKERS, A TACTILE REPRESENTATION OF ACCOMPLISHMENT. THESE STICKERS, INCLUDED WITH THE MULTITOOL, CAN BE PROUDLY AFFIXED TO ITEMS THAT USERS HAVE SUCCESSFULLY REPAIRED WITH THEIR LEATHERMAN TOOL. THIS NOT ONLY SERVES AS A SUBTLE ENDORSEMENT OF THE BRAND BUT ALSO SPREADS THE MESSAGE OF SUSTAINABILITY AND SELF-RELIANCE IN AN ORGANIC AND PERSUASIVE MANNER. *ALL STICKERS WOULD BE MADE OUT OF OCEAN PLASTIC.

FINAL CONCEPT #3 - MARKETING CAMPAIGN (CONT.)

WOMEN AND GENDER INCLUSIVITY

Women empowerment is already peppered throughout Leatherman's marketing materials, but we believe it can be taken one step further. Encouraging young women to express their creativity and bad-ass nature is a message that feels sincere and aligned with existing Leatherman values.

LEATHERMAN FIX-IT CAMPAIGN ONLINE FORUM

WOMEN AND GENDER INCLUSIVITY

JOIN THE REVOLUTION! LEATHERMAN MULTITOOL ISN'T JUST FOR THE OUTDOORSY GUYS; IT'S A VERSATILE COMPANION FOR THE BOLD AND BADASS GIRLS WHO ROCK. EMBRACE THE TRUE SPIRIT OF EMPOWERMENT.

KEY MESSAGING

- LEATHERMAN MULTITOOL IS A TOOL FOR EVERYONE, BREAKING STEREOTYPES AND EMPOWERING GIRLS WHO ROCK.
- MUSIC AND CRAFTSWOMANSHIP GO HAND IN HAND, AND LEATHERMAN IS THERE TO SUPPORT EVERY CHORD AND EVERY FIX.
- ENCOURAGE SELF-EXPRESSION, CREATIVITY, AND INDEPENDENCE THROUGH THE #ROCKANDTOOLCHALLENGE

Image Source: https://werock.la/summer-camp/

CITATIONS

CITATIONS

CITATIONS BY PAGE

PAGE 1

• Leatherman Arc Photo > Leatherman, "ARC®," accessed December 7, 2023, Leatherman, https://www.leatherman.com/arc-833074.html

PAGE 2

• Leatherman Arc Photo > See PAGE 1

PAGE 3

Leatherman Wireframe Illustration > Accessed from product BOM provided by client

PAGE 6

• Baseline BOM + Bar Graphs > https://www.sustainableminds.com/

PAGE 8

- Nucor Logo > Pure PNG, "Nucor Logo," accessed December 7, 2023, Pure PNG, https://purepng.com/photo/1684/logos-nucor-logo
- Big River Steel Logo > Arkansas Northeastern College, "Big River Steel Employment Opportunities," accessed December 7, 2023, Arkansas Northeastern College, https://www.anc.edu/bigriversteel/
- Responsible Steel Logo > Responsible Steel, "ResponsibleSteel International Standards," accessed December 7, 2023, Responsible Steel, https://www.responsiblesteel.org/wp-content/uploads/2022/09/ResponsibleSteel-Standard-2.0.pdf
- LEED Logo > USGBC, "USGBC Trademark Policy and Branding Guidelines," accessed December 7, 2023, USGBC, https://support.usgbc.org/hc/en-us/articles/11941118063891-USGBC-Trademark-Policy-and-Branding-Guidelines

PAGE 16

• LCA Bar Graphs > https://www.sustainableminds.com/

PAGE 20

- Mylo Logo > Bolt Threads, "Meet Mylo," accessed December 7, 2023, Mylo Unleather, https://mylo-unleather.com/
- Material Images > Bolt Threads, Our Matrials," accessed December 7, 2023, Bolt Threads, https://boltthreads.com/

PAGE 23

- Bicycle Image > Kiwihug, "two brown and black commuter's bicycles," May 203, 2017, Unsplash, https://unsplash.com/photos/two-brown-and-black-commuters-bicycles-7zlbXLchXHA.
- Cradle to Cradle > Cradle to Cradle Products Innovation Institute, "Cradle to Cradle Certified[®]," accessed December 7, 2023, Cradle to Cradle Products Innovation Institute, https://c2ccertified.org/the-standard.
- LEED > U.S. Green Building Council, Inc., "LEED rating system," accessed December 7, 2023, U.S. Green Building Council, Inc., https://www.usgbc.org/leed.
- B Corp > B Corporation, "Make Business a Force For Good," accessed December 7, 2023, B Lab, https://www.bcorporation.net/en-us/.

PAGE 24

- ARC Tool > See PAGE1
- Gloved Hand > Hollands Work Wear, "Leatherman Bond EDC Multi-Tool W/ Nylon Sheath", accessed December 7, 2023, Hollands Work Wear, https://hollandsworkwear.co.uk/products/leatherman-bond-edc-multi-tool-w-nylon-sheath

PAGE 25

• Skateboard and Car > Printify (accessed December 7, 2023, https://printify.com/

APPENDIX

PRODUCT TEARDOWN

First we broke down the product and weighed each component. We used the weights of each part to complete the baseline LCA.

BREAKDOWN OF MULTI-TOOL COMPONENTS

Leatherman nylon sheath with multi-tool and screwdriver bit kit enclosed

Top view of Leatherman nylon sheath with tool and screwdriver bit kit enclosed Screwdriver bits

Multi-tool folded

Multi-tool with needlenose pliers displayed

Multi-tool with various tools displayed

LCA BASELINE

Second we created a product baseline in Sustainable Minds, then compared the following concepts again that baseline

Name	Material/Process	Qty	Amt	Unit	mPts	CO2 eq. kg	MS	Part ID	
+] PLASTIC SLEEVE FOR EXTRA	Polyethylene, LDPE, granulat	1	9	g	2.11x10 ⁻³	0.0342	E	34	Pressus 🕞 🗗 🖉 🤉
+] EXTRA BITS (11)	Stainless steel, austenitic	1	35	9	0.476	0.605	E	33	Procest 🐨 🤠 💉 3
+	Nylon 6	1	52	9	0.0601	1.16	E	32	Process 😁 🗗 🖍 3
+	Stainless steel, austenitic	1	0.25	g	2.08x10 ⁻³	2.08x10 ⁻³	Е	31	Process 🖝 🗗 🖉 🤉
+] BIT, EGSD-EGPSD, FINISHED	Stainless steel, austenitic	1	0.25	g	3.61x10 ⁻³	7.52x10 ⁻³	E	30	Process 🕹 🗗 🖉 2
+] BIT, PSD 1-2 SD, 3/16, FINISHEI	Stainless steel, austenitic	1	4	g	0.0545	0.0703	E	29	Process + d? -)
+ 🗋 SAW, MPT	Stainless steel, austenitic	1	9	g	0.122	0.151	Е	28	Process 👘 🗗 💉 🕽
+ SCREW, KB/JAW, BLACK	Stainless steel, austenitic	2	0.4	g	6.83x10 ⁻³	8.16x10 ⁻³	E	27	Procest 🐲 🗗 🖍 🤉
+] PIN, TOOL END, THICK/MEDIUM	Stainless steel, austenitic	2	0.5	g	8.32x10 ⁻³	8.16x10 ⁻³	E	26	Process 🔒 🗗 🖉
+ TPIN, JAW END, THICK, BLACK	Stainless steel, austenitic	2	2	g	0.0333	0.0326	E	25	Process 🕈 🗗 🖉 🕽
+ DLOCK, THICK, MPT	Stainless steel, austenitic	2	6	9	0.0999	0.100	Е	24	Process 💓 🗗 🖍 🕽
+	Polycarbonate, PC	2	0.25	g	2.30x10 ⁻⁴	4.13x10 ⁻³	Е	23	Process 🕞 🗗 🖉 🤉
+ D PLUG, HANDLE, BLACK	Acrylonitrile-butadiene-styren	2	0.25	g	2.32x10 ⁻⁴	2.42x10 ⁻³	Ē	22	Process - C
+ MAGNET, THICK, MPT	Nickel, primary	2	0.5	g	2.32×10 ⁻³	0.0160	E	21	Process at 🗗 💉 3
+ SCREW, POCKET CLIP, MPT/PH	Stainless steel, austenitic	2	0.1	g	1.77x10 ⁻³	3.04x10 ⁻³	Е	20	Present 🚼 🗗 🖉 1
+ SCISSOR, SPRING, MOD	Stainless steel, austenitic	1	1	g	0.0160	0.0194	Е	19	Process 🔶 🗗 💉 2
+ SCISSOR SUB-ASSY, MPT	Stainless steel, austenitic	1	9	g	10.1	11.1	Е	18	Process 🔶 🗗 🖉 🕽
+ WASHER, TOOL END, THICK, M	Stainless steel, austenitic	4	0.1	g	3.32×10 ⁻³	3.33x10 ⁻³	E	17	Process + c ² / 3
+ D POCKET CLIP, MPT	Stainless steel, austenitic	1	4	9	0.0333	0.0333	Е	16	Process 🔶 🗗 🖍 1
+] JAW SPACER	Stainless steel, austenitic	4	2	g	0.108	0.133	Е	15	Process + 61 2 2
+] BIT DRIVER, LG, BODY, MIM	Stainless steel, austenitic	1	10	g	0.321	0.465	Ē	14	Process E di 🖉 🖉 2
+ CAP LIFTER, PRYBAR	Stainless steel, austenitic	1	10	g	0.321	0.465	E	13	Prounts 🖉 🗗 🖉
+ C KB, MAGNACUT, DLC	Stainless steel, austenitic	1	17	g	0.272	0.330	Е	12	Proces + 12 2 1
+] HANDLE, POCKET CLIP	Stainless steel, austenitic	2	14	g	0.380	0.476	Е	11	Procest 🌸 🗗 💉 2
+ SPACER, BIT KEEPER	Stainless steel, austenitic	1	2	g	0.0167	0.0167	Е	10	Process 🛃 🗗 🖉
+ SCREW, TOOL END, MOD	Stainless steel, austenitic	2	0.2	g	3.82×10 ⁻³	0.0101	E	9	Process + d /
+ THUMB STUD, FREE, BLACK	Stainless steel, austenitic	1	0.1	9	6.98×10 ⁻⁴	2.22x10 ⁻³	Е	8	Process 🛨 🗗 🖍)
+	Stainless steel, austenitic	1	7	g	0.0949	0.116	Е	7	Process in 12 🖉 2
+ BORING AWL, WIRE STRIPPER	Stainless steel, austenitic	1	5	9	0.0801	0.0972	Ē	6	Process 🕢 🗗 🖍 2
+ CAN OPENER, MOD	Stainless steel, austenitic	1	5	g	0.0678	0.0838	E	5	Process 🛊 🗗 🖍 🕽
+ LOCK SPRING, TOOL, MOD	Stainless steel, austenitic	4	0.25	g	8.33x10 ⁻³	8.33x10 ⁻³	Е	4	Process 🐑 🗗 🖉 🕽
+ TILE, EXTERNAL	Stainless steel, austenitic	1	11	g	0.149	0.184	Е	3	Procest 🔶 🗗 💉 2
+ HANDLE, JAW GUIDE	Stainless steel, austenitic	2	14	g	0.382	0.502	Е	2	Process of di 🖉 3
+ JAW SUB-ASSY, THICK, MOD	Stainless steel, austenitic	1	62	g	1.99	2.89	E	1	Process a di 🖍 1
	Manufacturing total				15.2	19.1	E		
Name	Transportation mode	Qty	Amt	Unit	mPts	CO ₂ eq. kg	м	S Part ID	
- Assembled product									Add traus. mode
Transportation mode	Transport, combination truck		600	mi	2.74×10 ⁻³	0.0307	E		E2 6
Transportation mode	Freighter, oceanic		3000	mi	1.32×10 ⁻³	0.0189	E		20
Transportation mode	Train, freight, diesel		600	mi	1.70x10 ⁻³	0.0174	E		52 E

Total = 15mPts/func unit

General input mPts/func unit Process - Stainless steel, 10.0 austenitic: Metal working, stainless steel product manufacturing Process - Stainless steel. 1.30 austenitic: Casting. stainless steel, lost-wax Material - Stainless steel, 0.364 austenitic Process - Stainless steel. 0.325 austenitic: Drilling, CNC, chromium steel Process - Stainless steel, 0.210 austenitic: Casting. stainless steel, lost-wax Process - Stainless steel, 0.210 austenitic: Casting, stainless steel, lost-wax Material - Stainless steel, 0.206 austenitic Process - Stainless steel, 0.183 austenitic: Drilling, CNC, chromium steel Material - Stainless steel, 0.164 austenitic Material - Stainless steel, 0.164 austenitic

Impacts by SBOM inputs: Total [CO2 eq. kg/func unit]

Total = 19 CO2 eq. kg/func unit

OCC -- half-ore

mput	CO2 eq. kg/minc unit
Process - Stainless steel, austenitic: Metal working, stainless steel product manufacturing	11.0.
Process - Stainless steel. austenitic: Casting, stainless steel, lost-wax	2.02
Process - Nylon 6: Weaving, cotton	0.679
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.522
Material - Nylon 6	0.479
Material - Stainless steel, austenitic	0.339
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.326
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.326
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.294
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.236

COATINGS: REMOVAL OF COATINGS

Scorecard

		0.033% performance im	provement
15 ^{mPts per} 1 year of use	1	5 mPts per 1 year of use	
1 x 25 years of use	1	x 25 years of use	
15 mPts	15	mPts	
Estimate	Es	stimate	
Metal working, stainless steel product manufacturing Carcinogenics Manufacturing	t M m Ca M	etal working, stainless steel proc anufacturing arcinogenics anufacturing	luct
0		C	
Impact category	%	Impact category	%
Ecological damage		Ecological damage	
Acidification	0.23	Acidification	0.22
Ecotoxicity	4.41	Ecotoxicity	4.41
Eutrophication	0.23	Eutrophication	0.23
Global warming	1.82	Global warming	1.81
Ozone depletion	0	Ozone depletion	0
Resource depletion		Resource depletion	
Fossil fuel depletion	0.81	Fossil fuel depletion	0.8
Human health damage		Human health damage	
Carcinogenics	89.32	Carcinogenics	89.33
Non carcinogenics	2.01	Non carcinogenics	2.01
Respiratory effects	0.96	Respiratory effects	0.96
Smoo	0.23	Smog	0.23
		1203	

Impacts by SBOM inputs: Total [CO eq. kg/func unit]

CO2 eq. kg/func

	unit
Process - Stainless steel, austentitic: Metal working, stainless steel product manufacturing	11.0
Process - Stainless steel. austenitic: Casting. stainless steel, lost-wax	2,02
Process - Nylon 6: Weaving, cotton	0.679
Process - Stainless steel. austenitic: Drilling, CNC, chromium steel	0.522
Material - Nylon 6	0.479
Material - Stainless steel, austenitic	0.339
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.326
Process - Stainless steel, austentitic: Casting, stainless steel, lost-wax	0.326
Process - Stainless steel, austenitic: Dnlling, CNC, chromium steel	0.294
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.236

Input

0	_
Total = 19 CO2 eq. kg/fur	ic unit
Input	CO2 eq. kg/func unit
Process - Stainless steel	11.0

Process - Stainless steel austenitic: Metal working stainless steel product manufacturing	13.0
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	2.02
Process - Nylon 6: Weaving, colton	0.679
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	.0.522
Material - Nylon 6	0.479
Material - Stainless steel, auslenitic	0,339
Process - Stainlass steel, austenitic: Casting, stainless steel, lost-wax	0,326
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.326
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.294
Process - Stainless steel austenitic: Drilling, CNC, chromium steel	0.236

Impacts by SBOM inputs: Total [mPts/func unit]

15.2

12.7

10.2

7.6

5.1

2.5

ð.

Input	mPts/lunc unit	Input	mPts/lunc unit
Process - Stainless steel, austenitic. Metal working, stainless steel product manufacturing	10.0	Process - Stainless steel, austenitic: Metal working, stainless steel product manufacturing	10.0
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	1 30	Process - Stainless steel, austenific: Casting, stainless steel, lost-wax	1,30
Material - Stainless stee). austenitic	0.364	Material - Stainless steel, austenitic	0.364
Process - Stainless steel, austenitic: Onlling, CNC, chromium steel	0.325	Process - Stanless steel, austenitic: Drilling, CNC, chromium steel	0.325
Process - Stainless steel, austenitic; Casting, stainless steel, lost-wax	0.210	Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.210
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.210	Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.210
Material - Stainless steel. austenilic	0.206	Material - Stainless steel, austenitic	0.206
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.183	Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.183
Material - Stainless steel, austenitic	0.164	Material - Stainless steel, austentitic	0.164
Material - Stainless steel, austenitic	0.164	Material - Stainless steel, austenitic	0.164

SHEATH: KENAF FIBER

Scorecard

15	mPts per 1 year of use	1	5 mPts per 1 year of use	
1 x 25 15 mP Estima	years of use ts te	1 : 15 Es	x 25 years of use mPts stimate	
Metal m manuf Carcin Manuf	vorking, stainless steel produc acturing ogenics acturing	t Mi mi Ca Mi	etal working, stainless steel proc anufacturing arcinogenics anufacturing	duct
			6	
łr	npact category	%	Impact category	%
lr E	npact calegory icological damage	%	Impact category Ecological damage	%
ir E	npact category icological damage cidification	%	Impact category Ecological damage Acidification	% 0.21
jr E	npact category cological damage cidification cotoxicity	% 0.23 4.41	Impact category Ecological damage Acidification Ecotoxicity	% 0.21 4.41
ir E E	npact category icological damage cidification cotoxicity utrophication	% 0.23 4.41 0.23	Impact category Ecological damage Acidification Ecotoxicity Eutrophication	% 0.21 4.41 0.22
	npact category icological damage cidification cotoxicity. utrophication iobal warming	% 0.23 4.41 0.23 1.82	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming	% 0.21 4.41 0.22 1.71
	npact category cological damage cidification cotoxicity utrophication Jobal warming izone depletion	% 0.23 4.41 0.23 1.82 0	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion	% 0.21 4.41 0.22 1.71 0
ir A E G C	npact category cological damage cidification cotoxicity utrophication lobal warming scane depletion	% 0.23 4.41 0.23 1.82 0	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion	% 0.21 4.41 0.22 1.71 0
	npact category cological damage cidification cotoxicity <u>utrophication</u> siobal warming izane depletion tesource depletion ossil fuel depletion	% 0.23 4.41 0.23 1.82 0 0	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel deptetion	% 0.21 4.41 0.22 1.71 0 0.77
ir E E S S F F	npact category icological damage icidification cotoxicity utrophication iobal warming izone depletion basil fuel depletion basil fuel depletion tuman health damage	% 0.23 4.41 0.23 1.82 0 0	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Eossil fuel depletion Human health damage	% 0.21 4.41 0.22 1.71 0 0.77
11 11 12 12 12 11 11 11 11 11 11 11 11 1	npact category cological damage cidification cotoxicity utrophication lobal warming cone depletion cossil fuel depletion duman health damage arcinogenics	% 0.23 4.41 0.23 1.82 0 0 0.81 89.32	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinggenics	% 0.21 4.41 0.22 1.71 0 0.77 89.55
111 22 22 11 11 11 11 11 11 11 11 11 11	npact category icological damage cidification cotoxicity utrophication iobal warming zone depletion ossil fuel depletion duman health damage arcinogenics on carcinogenics	% 0.23 4.41 0.23 1.82 0 0.81 89.32 2.01	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Eossil fuel deptetion Human health damage Carcinogenics Non carcinogenics	% 0.21 4.41 0.22 1.71 0 0.77 89.55 1.98
	npact category icological damage cidification cotoxicity utrophication lobal warming zone depletion desource depletion ossil fuel depletion fuman health damage arcinogenics on carcinogenics espiratory effects	% 0.23 4.41 0.23 1.82 0 0.81 89.32 2.01 0.96	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel deptetion Human health damage Carcinogenics Non carcinogenics Respiratory effects	% 0.21 4.41 0.22 1.71 0 0.77 89.55 1.98 0.94

Impacts by SBOM inputs:

Total [CO eq. kg/func unit]

Total = 19 CO2 eq. kg/func unit

%

input		CO2 eq.	kg/func unit
Proces austen stainle manufa	s - Stainless steel, ltic. Metal working, ss steel product acturing		11.0
Proces austen stainle	s - Stainless steel, itic Casting, ss steel, lost-wax		2.02
Proces	s - Nylon 6: ng, cotton		0.679
Proces austen chromi	s - Stainless steel, itic: Drilling, CNC, um steel		0.522
Materia	al - Nylon 6		0.479
Materia	al - Stainless steel, Itic		0.339
Proces austen stainle	s - Stainless steel, itic: Casting, ss steel, lost-wax		0.326
Proces austen stainle	s - Stainless steel, itic: Casting, ss steel, lost-wax		0.326
Proces austen chromi	s - Stainless steel. itic. Drilling, CNC. um steel		0.294
Proces austen chromi	s - Stainless steel, itic Drilling, CNC, um steel		0.236

6.4	
3.2	
100	

Total = 18 CO2 eq. kg/func unit

Input	GO2 eq. kg/func unit	Input
Process - Stainless steel austenitic: Metal working, stainless steel product manufacturing	11.0	Process - Stainless steel, austenitic: Metal working, stainless steel product manufacturing
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	2.02	Process - Stainless steel austenitic: Casting stainless steel, lost-wax
Process - Stainless steel, austenitic: Drilling, CNC,	0.522	Material - Stainless steel austenitic
chromium steel Material - Stainless steel, austenitic	0,339	Process - Stainless steel, austenitic: Drilling, CNC, chromium steel
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.326	Process - Stainless steel, austenitic: Casting stainless steel, lost-wax
Process - Stainless steel, austenitic: Casting, stainless steel, Inst-wax	0.326	Process - Stainless steel. austenitic: Casting. stainless steel. lost-wax
Process - Stainless steel, austenitic: Drilling, CNC,	0.294	Material - Stainless steel, austenitic
chromium steel Process - Stainless steel, austenitic: Drilling, CNG,	0,236	Process - Stainless steel, austenitic: Drilling, CNC, chromium steel
chromium steel		Material - Stainless steel,
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.236	Austenitic Material - Stainless steel, austenitic
Material - Stainless steel	0.192	

Impacts by SBOM inputs: Total [mPts/func unit]

15.2

12.7

10.2

7.6

5.1

2.5

0

Total = 15mPts/func unit

Total = 15mPts/func unit

mPts/func unit	Input	mPts/func unit
10.0	Process - Stainless steel, austenitic: Metal working, stainless steel product manufacturing	10.0
1,30	Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	1.30
0.364	Material - Staintess steel. austenitic	0.364
0.325	Process - Stainless stee), austénitic: Drilling, CNC, chromium steel	0.325
0.210	Process - Stainless steel. austenitic: Casting, stainless steel, lost-wax	0.210
0.210	Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.210
0.205	Material - Stainless steel, austenilic	0.206
0.183	Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.183
0.164	Material - Stainless steel, austenitic	0,164
0.164	Material - Stainless steel. austenitic	0.164

SHEATH: NO SHEATH

Scorecard

		0.40% performance imp	rovement
15 mPts per 1 year of use		5 mPts per 1 year of use	
1 x 25 years of use 15 mPts Estimate	1 15 Es	x 25 years of use i mPts stimate	
Metal working, stainless steel product manufacturing Carcinogenics Manufacturing	M m Ci M	etal working, stainless steel prod anufacturing arcinogenics anufacturing	luct
		6	
	k -		
Impact category	%	Impact category	
Impact category Ecological damage	%	Impact category Ecological damage	*
Impact category Ecological damage Acidification	%	Impact category Ecological damage Acidification	%
Impact category Ecological damage Acidification Ecoloxicity.	% 0.23 4.41	Impact category Ecological damage Acidification Ecotoxicity	% 0.21 4.41
Impact category Ecological damage Acidification Ecotoxicity. Eutrophication	% 0.23 4.41 0.23	Impact category Ecological damage Acidification Ecotoxicity Eutrophication	% 0.21 4.41 0.22
Impact category Ecological damage Acidification Ecoloxicity. Eutrophication Global warming	% 0.23 4.41 0.23 1.82	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming	% 021 441 022 1.71
Impact category Ecological damage Acidification Ecotoxicity. Eutrophication Global warming Ozone depletion	% 0.23 4.41 0.23 1.82 0	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion	% 0.21 4.41 0.22 1.71 0
Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion	% 0.23 4.41 0.23 1.82 0	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion	% 0.21 4.41 0.22 1.71 0
Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion	% 0.23 4.41 0.23 1.82 0 0	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion	% 0.21 4.41 0.22 1.71 0 0.77
Impact category Ecological damage Acidification Ecotoxicity. Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage	% 0.23 4.41 0.23 1.82 0 0	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage	% 0.21 4.41 0.22 1.71 0 0.77
Impact category Ecological damage Acidification Ecoloxicity. Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics	% 0.23 4.41 0.23 1.82 0 0.81 89.32	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics	% 0.21 4.41 0.22 1.71 0 0.77 89.54
Impact category Ecological damage Acidification Ecotoxicity. Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics Non carcinogenics	% 0.23 4.41 0.23 1.82 0 0.81 89.32 2.01	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics Non carcinogenics	% 0.21 4.41 0.22 1.71 0 0.77 89.54 1.99
Impact category Ecological damage Acidification Ecoloxicity. Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics Non carcinogenics Respiratory effects	% 0.23 4.41 0.23 1.82 0 0.81 89.32 2.01 0.96	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics Non carcinogenics Respiratory effects	% 0.21 4.41 0.22 1.71 0 0.77 89.54 1.99 0.94

Impacts by SBOM inputs: Total [CO eq. kg/func unit]

Total = 19 CO2 eq. kg/func unit

%

0

Input	CO2 eq. kg/func unit
Process - Stainless steel, austenitic: Metal working, stainless steel product manufacturing	11.0
Process - Stainless steel, austenitic: Casting, stainless steel, lost,way	2.02
Process - Nylon 6: Weaving, cotton	0.679
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.522
Material - Nylon 6	0.479
Material - Stainless steel, austenitic	0.339
Process - Stainless steel, austenitic: Casting, stainless steel, losl-wax	0,326
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.326
Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.294
Process - Stainless steel austenitic: Drilling, CNC, chromium steel	0.236

Total = 18 CO2 eq. kg/func unit

input. CO2 eq. kg/func unit: Process - Stainless steel. 11.0 austenitic: Metal working. stainless steel product manufacturing Process - Stainless steel 2.02 austenitic: Casting. stainless steel, lost-wax Process - Stainless steel, 0.522 austenitic: Drilling, CNC, chromium steel Material - Stainless steel 0.339 austenitic Process - Stainless steel. 0.326 austenitic: Casting, stainless steel, lost-wax Process - Stainless steel, 0.326 austenitic; Casting, stainless steel, lost-wax Process - Stainless steel, 0.294 austenitic: Drilling, CNC. chromium steel Process - Stainless steel, 0.236 austenitic: Drilling, CNC, chromium steel Process - Stainless steel, 0.236 austenitic Dnilling GNC, chromium steel Material - Stainless steel, 0,192 austenitic.

Impacts by SBOM inputs: Total [mPts/func unit]

15.2

12.7

10.2

7.6

5,1

35

0

Total = 15mPts/func unit

Total = 15mPts/func unit

Input	mPts/func unit	Input.	mPts/func unit
Process - Stainless steel, austenitic: Metal working, stainless steel product manufacturing	10.0	Process - Slainless steel, austenitic: Metal working, slainless steel product manufacturing	10.0
Process - Stainless steel, austenitic: Casting stainless steel, lost-wax	1.30	Process - Stainless steel. austenitic: Casting, staintess steel, lost-wax	1.30
Material - Stainless steel, austenitic	0.364	Material - Stainless steel, austenitic	0.364
Process - Stainless steel austenitic: Dniling, CNC, chromium steel	0.325	Process - Stainless steel austenitic: Drilling, CNC, chromium steel	0.325
Process - Stainless steel, austenitic: Casting stainless steel, lost-wax	0.210	Process - Stainless steel. austenitic: Casting, stainless steel, lost-wax	0.210
Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0 210	Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.210
Material - Stainless steel, austenitic	0.206	Material - Stainless steel. austenitic	0.206
Process - Stainless steel. austenitic: Dritting, CNC, chromium steel	0.183	Process - Stainless steel austenitic: Drilling, CNC, chromium steel	0.183
Material - Stainless steel, austenitic	0.164	Material - Stainless steel, austenitic	0.164
Material - Stainless steel, austenitic	0.164	Material - Stainless steel, austenitic	0.164

SHEATH: RECYCLED COTTON

Scorecard

		0.14% performance imp	provement
15 ^{mPts per} 1 year of use	1	5 ^{mPts per} 1 year of use	
1 x 25 years of use 15 mPts Estimate		x 25 years of use 5 mPts stimate	
Metal working, stainless steel product manufacturing Carcinogenics Manufacturing	M M C M	etal working, stainless steel prod anufacturing arrcinogenics anufacturing	luct
0		6	
Impact category	%	Impact category	%
Impact category Ecological damage	%	Impact category Ecological damage	%
Impact category Ecological damage Acidification	% 0.23	Impact category Ecological damage Acidification	%
Impact category Ecological damage Acidification Ecotoxicity	% 0.23 4.41	Impact category Ecological damage Acidification Ecoloxicity	% 0.22 4.41
Impact category Ecological damage Acidification Ecotoxicity. Eutrophication	% 0.23 4.41 0.23	Impact category Ecological damage Acidification Ecoloxicity Eutrophication	% 0.22 4.41 0.22
Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warning	% 0.23 4.41 0.23 1.82	Impact category Ecological damage Acidification Ecoloxicity Eutrophication Global warming	% 0.22 4.41 0.22 1.77
Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warning Ozone depletion	% 0.23 4.41 0.23 1.82 0	Impact category Ecological damage Acidification Ecoloxicily. Eutrophication Global warming Ozone depletion	% 0.22 4.41 0.22 1.77 0
Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warning Ozone depletion Resource depletion	% 0.23 4.41 0.23 1.82 0	Impact category Ecological damage Acidification Ecoloxicily. Eutrophication Global warming Ozone depletion Resource depletion	% 0.22 4.41 0.22 1.77 0
Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion	% 0.23 4.41 0.23 1.82 0 0	Impact category Ecological damage Acidification Ecoloxicily Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion	% 0.22 4.41 0.22 1.77 0 0.78
Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage	% 0.23 4.41 0.23 1.82 0 0	Impact category Ecological damage Acidification Ecoloxicily Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage	% 0.22 4.41 0.22 1.77 0 0.78
Impact category Ecological damage Acidification Ecotoxicity. Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics	% 0.23 4.41 0.23 1.82 0 0 0.81 89.32	Impact category Ecological damage Acidification Ecoloxicily Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics	% 0.22 4.41 0.22 1.77 0 0.78 89.41
Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics Non carcinogenics	% 0.23 4.41 0.23 1.82 0 0.81 89.32 2.01	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics Non carcinogenics	% 0.22 4.41 0.22 1.77 0 0.78 89.41 2.01
Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics Non carcinogenics Respiratory offects	% 0.23 4.41 0.23 1.82 0 0.81 89.32 2.01 0.96	Impact category Ecological damage Acidification Ecoloxicily. Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Fossil fuel depletion Human health damage Carcinogenics Non carcinogenics	% 0.22 4.41 0.22 1.77 0 0.78 89.41 2.01 0.95

Product Baseline LCA **Recycled Cotton Sheath** 19.2 19.2 16 16 17.8 12.8 9.6 9.6 6.4 3.2 'n. Total = 19 CO2 eq. kg/func unit

Impacts by SBOM inputs:

Total [CO eq. kg/func unit]

CO2 eq. kg/func Input. **And** 11.0 Process - Stamless steel austenitic: Metal working, stainless steel product manufacturing Process - Stainless steel, 2.02 austenitic: Casting. stainless steel, lost-wax Process - Nylon 6: 0,679 Weaving, cotton 0.522 Process - Stainless steel austenitic Dniling, CNC, chromium steel Material - Nylon 6 0,479 Material - Stainless steel, 0,339 austénitic Process - Stainless steel, 0.326 austenitic: Casting. stainless steel lost-wax Process - Stainless steel, 0.326 austenitic: Casting. stainless steel, lost-wax Process - Stainless steel. 0.294 austenitic: Dnilling, CNC, chromium steel Process - Stainless steel, 0.236 austenific: Dnilling, CNC, chromium steel

64	
3.2	
0	
Total = 19 CO2 eq	, kg/func unil
Input	CO2 eq. kg/l
Process - Stainle austenitic: Metal stainless steel p/ manufacturing	rss sterl. working, oduct
Process - Stainle nustenitic: Castin	ess steel,
sidiliicaa ateel, it	ost-wax

chromium steel

chromium steel

Process - Stainless steel.

austenitic: Drilling, CNC,

func unit 11.0. 2.02 Process - Stainless steel. 0.679 cotton: Weaving, cotton Process - Stainless steel. Process - Stainless steel, 0.522 austenitic: Drilling, CNC. austenitic: Drilling, CNC, chromium steel Material - Stainless steel 0.339 austenitic Process - Stainless steel, 0.326 austenitic: Casting. stainless steel, lost-wax stainless steel. lost-wax Process - Stainless steel. 0.326 austenitic: Casting. stainless steel, lost-wax Process - Stainless steel. 0.294 austenitic: Drilling, CNC, chromium steel Process - Stainless steel. 0.236 austenitic: Drilling, CNC.

0.236

15.Z

12.7

10.2

7.5

5.1

25

12

Input

Process - Stainless steel.

austenitic: Metal working.

stamless steel product.

manufacturing

austenilla

chromium steel

austenitic: Casting,

austenitic: Casting,

austenitic

austenitic

austenițic

chromium steel

austenitic: Casting,

stainless steel, lost-wax

Material - Stainless steel,

Process - Stainless steel.

stainless steel, lost-wax

Process - Stainless steel

Material - Stainless steel,

Process - Stainless steel

austenitic: Drilling, CNC,

Material - Stainless steel.

Material - Stainless steel

Impacts by SBOM inputs: Total [mPts/func unit]

une unit	Input	mPts/func unit
10.0	Process - Stainless sleel, austenitic: Metal working, stainless steel product manufacturing	10.0
1.30	Process - Stainless steel, austenitic, Casting, stainless steel, lost-wax	1.30
0.364	Material - Stainless steel, austenitic	0.364
0.325	Process - Stainless steel austenitic: Drilling, CNC, chromium steel	0.325
0.210	Process - Stainless steel, austenitic. Casting, stainless steel, lost-wax	0.210
0.210	Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.210
0.206	Material - Stainless steel, austenitic	0.206
0.183	Process - Stainless steel, austenitic: Drilling, CNC, chromium ateel	0,183
0,164	Material - Stainless steel, austenitic	0,164
0.164	Material - Stainless steel, austenitic	0.164

SHEATH: VEGETABLE TANNED LEATHER

Impacts by SBOM inputs: Impacts by SBOM inputs: Scorecard Total [CO eq. kg/func unit] Total ImPts/func unit1 Vegetable Tanned Cow Hide Product Baseline LCA Vegetable Tanned Cow Hitein Product Baseline LCA 0.87% performance reduction (Italian Leather) (Italian Leather) 19.2 15.2 15.4 19.6 15 mPts per 1 year of use mPts per 15 ^{mPts per} 1 year of use 16 12.7 1 x 25 years of use 1 x 25 years of use 16.3 12.8 15 mPts 15 mPts Estimate Estimate 12.8 10.2 13.1 10.3 Metal working, stainless steel product Metal working, stainless steel product manufacturing manufacturing 现后 7,6 9.8 72 Carcinogenics Carcinogenics Manufacturing Manufacturing 6.4 5.1 6.5 54 3.2 2.5 1.3 龙 0. 0 0 6 Total = 19 CO2 eq. kg/func unit Total = 20 CO2 eq. kg/func unit Total = 15mPts/func unit Total = 15mPts/func unit CO2 eq. kg/func CO2 eq. kg/func unit Input Input Input mPts/func unit Input mPts/func unit unit Process - Stainless steel. 11.0 Process - Stainless steel 10.0 Process - Stainless steel Process - Stainless steel. 11.0 austenitic: Metal working austenitic: Metal working austenitic: Metal working stainless steel product stainless steel product % austenitic: Metal working stainless steel product Impact category % Impact category stainless steel product manufacturing manufacturing manufacturing manulacturing Process - Stainless steel 2.02 Process - Stainless steel Ecological damage Ecological damage Process - Stainless steel 1.30 Process - Stainless steel austenitic Casting 2.02 austenitic: Casting, austenitic: Casting. 0.23 0.23 Acidification Acidification austenitic: Casting. stainless steel, lost-wax stainless steel, lost-wax stainless steel, lost-wax stainless steel lost-wax Process - Cowskin (cow 1,29 Material - Stainless steel, 0.364 Material - Stainless steel, 4.94 Ecotoxicity 4.41 Ecotoxicity Process - Nylon 6: 0.679 hide): Vegetable tanning. austenitic austenitic Weaving, cotton leather. Italy, industry Process - Stainless steel 0.325 Process - Stainless steel 0.23 0.47 Eutrophication Eutrophication sources Process - Stainless steel 0.522 austenitic Drilling, CNC, austenitic: Drilling, CNC. 1.82 1.84 austenitic: Drilling, CNC. Process - Stainless steel 0.522 chromium steel chiromium steel Global warming **Global warming** chromium steel austenitic: Drilling, CNC, Process - Stainless steel, 0.210 Process - Stainless steel 0 0 Material - Nylon 6 0,479 chromeen steel austenitic: Casting. austenitic: Casting: Ozone depletion Ozone depletion Material - Stainless steel, 0.339 stainless steel, lost-wax stainless steel, lost-way Material - Stainless steel, 0.339 austenitic Process - Stainless steel. 0.210 Process - Stainless steel. **Resource** depletion **Resource** depletion austenitic Process - Stainless steel 0.326 austenitic: Casting austenitic: Casting. Process - Stainless steel, 0.326 Fossil fuel depletion 0.81 Fossil fuel depletion 0.79 austenitic; Casting. stainless steel, lost-wax stainless steel, lost-wax austenitic: Casting stainless steel, lost-wax Material - Stainless steel 0.206 Material - Stainless steel stainless steel, lost-way Process - Stainless steel 0.326 austenitic austenitic Human health damage Human health damage Process - Stainless steel, 0.326 austenitic: Casting Process - Stainless steel, Process - Stainless steel 0.183 austenitic: Casling. 89.32 88 57 stainless steel, lost-wax Carcinogenics Carcinogenics austenitic, Drilling, CNC, austenitic: Drilling, CNC, stainless steel, lost-wax Process - Stainless steel 0.294 chromium steel chromium steel Process - Stainlass steel 0.294 2.01 1.99 Non carcinogenics Non carcinogenics austenitic: Drilling, CNC, Material - Stainless steel 0.164 Material - Stainless steel austenitic: Drilling, CNC. chromium steel austanitic austenitic 0.95 chromium steel 0.96 **Respiratory** effects Respiratory effects Material - Cowskin (cow 0.275 Material - Stainless steel 0.164 Material - Stainless steel. Process - Stainless steel 0.236 hide) austenitic austenitic 0.23 0.22 austenitic: Drilling, CNC, Smog Smog Process - Stainless steel 0.236 chromium steel

austenitic: Drilling, CNC, chromium steel

10.0

1 30

0,364

0.325

0.210

0.210

0.206

0,183

0.164

0.164

TRANSPORTATION: LOCALIZED STEEL SOURCING

Scorecard

	2.5x10^-3 % performance reduction				
15 ^{mPts per} 1 year of use	1	5 mPts per 1 year of use			
1 x 25 years of use 15 mPts Estimate	1 15 Es	1 x 25 years of use 15 mPts Estimate			
Metal working, stainless steel product manufacturing Carcinogenics Manufacturing	M M C M	Metal working, stainless steel product manufacturing Carcinogenics Manufacturing			
Impact category Ecological damage Actidification	% 0.23	Impact category Ecological damage Acidification	% 0.22		
Impact category Ecological damage Acidification Ecoloxicily	% 0.23 4.41	Impact category Ecological damage Acidification Ecoloxicity	% 0.22 4.41		
Impact category Ecological damage Acidification Ecoloxicily Eutrophication	% 0.23 4.41 0.23	Impact category Ecological damage Acidification Ecoloxicity. Eutrophication	% 0.22 4.41 0.23		
Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming	% 0.23 4.41 0.23 1.82	Impact category Ecological damage Acidification Ecoloxicity Eutrophication Global warming	% 0.22 4.41 0.23 1.82		
Impact category Ecological damage Actidification Ecotoxicity. Eutrophication Global warming Ozone depletion	% 0.23 4.41 0.23 1.82 0	Impact category Ecological damage Acidification Ecoloxicity: Eutrophication Global warming Ozone depletion	% 0.22 4.41 0.23 1.82 0		
Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion	% 0.23 4.41 0.23 1.82 0	Impact category Ecological damage Acidification Ecoloxicity: Eutrophication Global warming Ozone depletion Resource depletion	% 0.22 4.41 0.23 1.82 0		
Impact category Ecological damage Acidification Ecoloxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion	% 0.23 4.41 0.23 1.82 0 0	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion	% 0.22 4.41 0.23 1.82 0 0.81		
Impact category Ecological damage Acidification Ecoloxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage	% 0.23 4.41 0.23 1.82 0 0.81	Impact category Ecological damage Acidification Ecotoxicity Eutrophication Global warming Ozone depletion Resource depletion Eossil fuel depletion Human health damage	% 0.22 4.41 0.23 1.82 0 0.81		
Impact category Ecological damage Acidification Ecolexicily Eutrophication Global warming Ozone depletion Resource depletion Eossil fuel depletion Human health damage Carcinogenics	% 0.23 4.41 0.23 1.82 0 0.81 89.32	Impact category Ecological damage Acidification Ecoloxicity Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics	% 0.22 4.41 0.23 1.82 0 0.81 89.32		
Impact category Ecological damage Acidification Ecoloxicily Eutrophication Global warming Ozone depletion Resource depletion Eossil fuel depletion Human health damage Carcinogenics Non carcinogenics	% 0.23 4.41 0.23 1.82 0 0.81 89.32 2.01	Impact category Ecological damage Acidification Ecoloxicity. Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics Non carcinogenics	% 0.22 4.41 0.23 1.82 0 0.81 89.32 2.01		
Impact category Ecological damage Acidification Ecoloxicily Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics Non carcinogenics Respiratory effects	% 0.23 4.41 0.23 1.82 0 0.81 89.32 2.01 0.96	Impact category Ecological damage Acidification Ecoloxicity. Eutrophication Global warming Ozone depletion Resource depletion Fossil fuel depletion Human health damage Carcinogenics Non carcinogenics Resoiratory effects	% 0.22 4.41 0.23 1.82 0 0.81 89.32 2.01 0.96		

Product Baseline LCA 19.2 19.2 16 36 12.8 12.8 9.6 0.6 34.4 6.4 32 3.2 0 0

Total = 19 CO2 eq. kg/func unit

Input

%

unit	Total = 19 CO2 eq. kg/func unit		
CO2 eq. kg/func	Input	C02 (
Unit	Process - Stainless steel.		

Impacts by SBOM inputs:

Total [CO eq. kg/func unit]

Localized Steel Sourcing

15.2

12.7

5.1

2.5

		Linerana - enterintering and an
Process - Stainless steel, austenitic: Metal working, stainless steel product	11.0	austenitic: Metal working, stainless steel product manufacturing
manufacturing Process - Stainless steel, austenitic: Casting,	2.02	Process - Stainless steel. austenitic: Casting stainless steel, lost-wax
stainless steel, lost-wax		Process - Nylon B
Process - Nylon 6: Weaving, cotton	0,679	Weaving, cotton
Process - Stainless steel, austenitic, Drilling, CNC.	0.522	austenitic: Drilling, CNC, chromium steel
chromium steel		Material - Nylon 6
Material - Nylon 6	0.479	Material - Stainless steel,
Material - Stainless steel.	0.339	austenitic
austenitic		Process - Stainless steel.
Process - Stainless steel, austenitic: Casting	0.326	austenitic: Casting stainless steel, lost-wax
stainless steel, lost-wax		Process - Stainless steel,
Process - Stainless steel, austenitic: Casting,	0.326	austenitic: Casting. stainless steel, lost-wax
stainless steel, lost-wax		Process - Stainless steel.
Process - Stainless steel, austenitic: Drilling, CNC,	0.294	austenitic: Drilling, CNC, chromium steel
chromium steel		Process - Stainless steel,
Process - Stainless steel austenitic: Drilling, CNC, chromium steel	0.236	austenitic: Drilling, CNC, chromlum steel

Impacts by SBOM inputs: Total [mPts/func unit]

CO2 eq. kg/func unit	Input	mPts/func unit	Input	mPts/func unit
-11.0.	Process - Stainless steel, austeniuc: Metal working, stainless steel product manufacturing	10.0	Process - Stainless steel, austenitic: Metal working, stainless steel product manufacturing	10.0
2.02	Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax,	1.30	Process - Stainless steel. austenitic: Casting, stainless steel, lost-wax	1.30
0.679	Material - Stainless steel austenitic	0.364	Material - Stainless steel. austenitic	0.364
0.522	Process - Stainless steel austentitc: Drilling, CNC, chromium steel	0.325	Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.325
0.479	Process - Stainless steel, austenitic: Casting, stainless steel, tost-wax	0.210	Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	0.210
0.326	Process - Stainless steel, austenitic: Casting, stainless steel, lost-wax	D.210	Process - Stainless steel, austentitic: Casting, stainless steel, lost-wax	0.210
0,326	Material - Stainless steel. austenitic	0.206	Material - Stainless steel, austenitic	0.206
0.294	Process - Stainless steel, austenitic: Drilling, CNC, chromium steel	0.183	Process - Stainless steel. austenitic: Drilling, CNC, chromium steel	0.183
	Material - Stainless steel, austenitic	D.164	Material - Stainless steel. austenitic	0.164
0.236	Material - Stainless steel auslenitic	0.164	Material - Stainlets steel, austenitic	0.164

FINAL LCA CONCEPT COMPARISON

Functional unit: 25 years of use	Impacts / functional unit	CO ₂ eq. kg / functional unit	Performance improvement from reference	Performance improvement from reference	Units of svc delivered	Assessment type
Create a new Concept	mets/func unit	unit	mPts	%	Svc. Units	
Reference Product Baseline LCA	15	19			1	Estimate
Copy Declare as: Final						
Lowest impact						
Removal of Sheath	15	18	+0.061	+0.40%	1	Estimate
Copy Delete Declare as: Reference Final						
Kenaf Stalk Fiber Sheath	15	18	+0.059	+0.39%	1	Estimate
Copy Delete Declare as: Reference Final						
Copy I Delete	15	19	+0.022	+0.14%	1	Estimate
Declare as: Reference Final						
Contings	15	19	+5.1x10 ⁻³	+0.033%	1	Estimate
Declare as: Reference Final						
Localized Steel Sourcing	15	19	-4.0x10 ⁻⁴	-2.5x10 ⁻³ %		Estimate
Copy Delete Declare as: Reference Final						
Vegetable Tanned Cow Hide (Italian Leather)	15	20	-0.13	-0.87%	1	Estimate
Copy Delete Declare as: Reference Final						